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Background. The origins of the Atomic Hypothesis—the notion that the
material world can be understood as a manifestation of the interactions among
populations of invisibly tiny “atoms,” the nature and properties of which could
only be conjectured—has been traced to the Greek philosopher Leucippus (early
5th Century bce), but may possibly have been entertained as early as the 13th

or 12th Century bce by Mochus of Sidon. Leucippus’ idea was elaborated in the
better-known work of his student Democritus (c460–c370 bce). Atomism was
embraced by Epicurus (341–270 bce), whose views were promulgated in De
Rerum Natura (“On the Nature of Things”), the influential long philosophical
poem by Lucretius (c99–c55 bce). But well into the 19th Century the atomic
hypothesis—which had occupied a place in the world of ideas for more than
twenty (and perhaps more than thirty) centuries—remained very much that, a
mere hypothesis, unsupported by a shred of direct physical evidence.1

“Are atoms real?” was for 19th Century chemists and physicists an elusive
question of ever greater relevance to the interpretation of developments. In
1803 John Dalton (1766–1844) had endowed elemental “atoms” with a set of
five defining properties that provided the foundation for subsequent chemical
research, and by 1811 “Avogadro’s Law” had been propounded, but it was
recognized (and—by such leading figures as Sir Humphry Davy—insistently
emphasized) that the success those conceptual devices did not address the
ontological issue,2 did not compel abandonment of the prevailing “it’s as if”
attitude.

That 19th Century physicists were, by and large (and especially in Britian),
quicker than chemists to embrace the idea that atoms/molecules are indeed real

1 The success of Newtonian mechanics provided no such evidence, for the
“point particles” contemplated by Newton were idealized abstractions. It served
Newton’s purposes to think of (say) Mars as a “particle,” though it was not at
all the kind of object that the atomists had in mind.

2 For an excellent survey of the complex evolution of thought in this area,
see Chapter 5 (“The reality of molecules”) of A. Pais, “Subtle is the Lord. . . :
The Science and the Life of Albert Einstein (1982).
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was due mainly to the development and striking success of the kinetic theory of
gases, for which ground had been prepared by the invention of thermodynamics.

In 1824, Sadi Carnot (1796–1832) published his Reflections on the Motive
Power of Fire which, however, attracted little attention until its importance
was finally recognized by Émile Clapeyron (1834), Rudolf Clausius (1850) and
William Thomson (Lord Kelvin, 1851), who collectively managed to construct
precursors of the entropy concept (though its name and recognizably modern
formulation were introduced only in 1865, by Clausius). In 1845 James Joule
established the mechanical equivalence of heat, and in 1847 Hermann Helmholtz
asserted that thermal energy is a form of mechanical energy and that energy
(thermal + mechanical) is conserved. And during the years 1850–1855 Clausius,
Helmholtz and Kelvin produced formulations of 1st and 2ndLaws, so that by
about 1855 the essential outlines of a classical thermodynamics had been drawn.

These developments motivated Clausius to revisit and to undertake to
extend an idea that had been put forward more than a century earlier: Daniel
Bernoulli (1700–1782) had in 1738 developed a rudimentary “kinetic theory
of gases” on the basis of an assumption that physical gases can be modeled
as clouds of flying Newtonian point masses, and Roger Boscovich (1711–1787)
published closely related ideas in 1745. But this work seems to have attracted
little attention. More elaborate theories—very much in the Bernoulli tradition
—were developed in papers by John Herapath (1820) and John Waterston
(1845) which, however, the Royal Society declined to publish on grounds that
they were “too mathematical,” else by authors too obscure, else based upon
a hypothesis too implausible to be taken seriously. Clausius’ “On the kind of
motion we call heat” appeared in 1857, a second paper followed a year later, and
it was the publication of Clausius’ papers that led the 29-year-old Maxwell to
take up that subject,3 which he developed in three monumental papers (1860,
1867 and 1879, the year of his death). In the first of those papers, after
acknowledging his indebtedness to his predecessors and drawing attention to
limitations present in their work, Maxwell begins “If we adopt a statistical
theory. . . ” and within four pages produces the Maxwell distribution.

Reliance upon statistical modes of argument was certainly the most
distinctive novel feature of Maxwell’s richly detailed kinetic theory of gases.
Ludwig Boltzman (1844–1906), whose dissertation (1866) derived from
Maxwell’s first paper, recognized—as had Maxwell himself—that the swift
elegance of Maxwell’s derivation of the velocity distribution formula hinged on
an assumption (statistical independence of the velocity components) that, while
mathematically natural, was physically somewhat dubious. His effort to address
this problem led over the years to the invention of the Boltzmann equation

3 Simultaneously with his development of electrodynamics and work also
on many (!) other topics; see W. D. Niven (editor), The scientific papers of
James Clerk Maxwell (1890), which is available as a Dover reprint. Maxwell’s
“A dynamical theory of the electromagnetic field” appeared in 1864, and his
A treatise on Electricity & Magnetism in 1873.
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(1872), the H-theorem and by 1884 to the statistical mechanics of thermally
equilibrated systems, a subject brought to a state of perfection by Gibbs
(1839–1903), whose Elementary Principles of Statistical Mechanics, developed
with especial reference to the Rational Foundation of Thermodynamics was
published in 1902.

It is of interest that Boltzmann was obliged throughout his career to
attempt to defend his belief that atoms/molecules are real (or at least that
it is legitimate to proceed “as if” they were real); influential German physicists
at that time—under the influence principally of Ernst Mach (1838–1919) who,
in 1897, after a lecture by Boltzmann, declared “I don’t believe that atoms
exist”—held that in the absence of direct experimental evidence that such
entities actually exist it was improper to allude to them in scientific discourse.
So pervasive was that “logical positivist” view that the editors of scientific
journals declined to publish Boltzmann papers in which the language appeared
to impute physical reality to atoms.

In Britain, Maxwell, though subject to no such constraint, did—beginning
in 1866—publish occasional essays bearing titles like “On the dynamical
evidence of the molecular constitution of bodies,” but in all of his writing made
it abundantly clear that, while the evidence for the existence of atoms/molecules
—microscopic bodies subject to the laws of mechanics—remained circumstantial,
and their detailed properties remained to be discovered, their reality was in his
view assured.

Maxwell’s demon & Brownian ratchets. Maxwell had come by 1866 to the
realization that the 2nd Law of thermodynamics is in essence a statistical
proposition that derives its seemingly inviolable inevitability not so much from
physics (molecular dynamics) as from the Law of Large Numbers—an insight
reaffirmed by Boltzmann in 1877.4 Thus was Maxwell—given his conviction
that atoms are real objects—led to describe in a letter to his friend Peter
Guthrie Tait (1867) how the 2nd Law could be contravened if a “very observant
and neat-fingered being” who “knows the paths and the velocities of all the
molecules” and who guards a gate in the partition that separates the two halves
of an enclosed initially equilibrated gas were to manipulate the gate in such a
way as to allow warm atoms to pass one way, cool atoms to pass the other
way. Such a being, using only its intelligence and without the expenditure of
any effort, could create a temperature differential that could be used to do
work. Maxwell broached the same idea in a letter (1871) to John Strutt (Lord
Rayleigh) and made it the subject of a concluding section of his Theory of Heat
(1871). The first allusion to “Maxwell’s Demon” appears in a paper published
by Kelvin in 1874. Maxwell’s Demon has suffered many instructive deaths and
enjoyed many still more instructive reincarnations since brought into the world

4 Boltzmann’s H-theorem (1872) was the fruit of an effort to derive the law of
entropy increase from kinetic theory. But Boltzmann’s friend Josef Loschmidt
(1821–1895) pointed out (as Kelvin was the first to report in an 1874 paper)
that reversible mechanics cannot by itself give rise to irreversible phenomena.
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by Maxwell, nearly 150 years ago, and is today more productively vigorous than
ever.5 But Maxwell’s “neat-fingered being” was for Maxwell himself simply an
idea, the principal actor in a thought-experiment which, while predicated on
the presumption that atoms are real, provided no direct evidence in support of
that presumption.6

The “molecular reality question” was settled when (which did not happen
immediately) physicists gained an appreciation of the rich theoretical and
exprimental implications of Einstein’s Brownian motion paper (1905). Einstein
once remarked that “Unacquainted with the investigations of Boltzmann and
Gibbs which had appeared earlier and which in fact dealt exhaustively with
the subject, I [had, during the years 1902–1904, independently rediscovered
all the elements of ] statistical mechanics and the molecular-kinetic theory of
thermodynamics based upon it. My main purpose in doing this was to find
facts which would attest to the existence of atoms of definite size.”

Marian Smoluchowski (1872–1917) was a Polish physicist who worked
in the tradition of Boltzmann and whose theory (1906) of Brownian motion
was developed simultaneously and independently of Einstein’s, to which it
conformed in all essential particulars. In 1912 he described a hypothetical
device which—insofar as it exploited atomicity to achieve seeming violation of
the second law of thermodynamics—can be viewed as a mindless variant of
Maxwell’s Demon: it involved a microscopic paddle wheel that experienced
Brownian motion when bombarded by gas molecules. A ratchet and pawl
mechanism (analogs of the Demon’s “neat fingers”) allowed the paddle to
rotate in one direction, but prevented rotation in the opposite direction. The
uni-directional paddle could, in principle, be arranged to lift a weight, resulting
in a device that exploits fluctuations in the random motion of molecules to
do work. Since work would be produced without the transfer of heat from
one reservoir to another at lower temperature, the device would operate in
violation of the 2nd Law. But as Smoluchowski himself pointed out, the pawl is
necessarily dissipative, necessarily heats up a bit each time it snaps shut, so that
ultimately it experiences its own Brownian motion, and is rendered ineffective.

5 For the classic contributions to this subject (through 2002), with elaborate
and very helpful commentary, see Harvey S. Leff & Andrew F. Rex (editors),
Maxwell’s Demon 2 : Entropy, Classical & Quantum Information, Computing
(2003). Compliance with the 2nd Law was re-established when Leo Szilard
(“On the reduction of entropy in a thermodynamic system by the invervention
of intelligent beings,” Z. fŭr Physik 53, 840-856 (1929)) assigned entropy-like
measure to the information that the Demon requires to do its work, and by Rolf
Landauer’s argument (1961) to the effect that all information is in fact physical
(“Landauer’s Principle”).

6 Efforts are presently under way to construct operational physical
embodiments of Maxwell’s Demon, devices that convert information into energy.
See (for example) C. Jarzynski et al , “Maxwell’s refrigerator: An exactly
solvable model,” PR Letters 111, 030602 (2013) and the many relevant websites
supplied by Google.
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In a lecture presented in 1962 (reproduced as Chapter 46 in Volume I
of The Feynman Lectures on Physics) Richard Feynman used Smoluchowski’s
ratchet (without attribution7) to make intuitively plausible why “if everything
is at the same temperature, heat cannot be converted to work by means of a
cyclic process,” as Carnot had asserted. And why, more particularly, the kinetic
motion of the molecules in an equilibrated gas cannot be made (except briefly)
to do work.

Enter: Parrondo. In 1996, Juan M. R. Parrondo and Pep Español published an
elaborately detailed criticism of some aspects of Feynman’s argument,
particularly as it relates to the maximal efficiency of Brownian motors.8 That
work led promptly (by a train of thought that, so far as I am aware, has
never been described) to the discovery of “Parrondo’s Paradox,” which was
first reported in a talk on the “Efficiency of Brownian motors” that Parrondo
presented at a Workshop on Complexity and Chaos that took place in Torino,
Italy in July, 1996.9 At that workshop Parrondo met Derek Abbott (Director
of the Center for Biomedical Engineering at the University of Adelaide). In
luncheon conversation over a glass of wine they discovered their mutual interest
in “stochastic ratchets” (which they both recognized to be “ubiquitous in
physical and biological systems,” and of importance in fields as diverse as
economics, biogenesis and game theory), and became thereafter frequent
collaborators. It fell, in fact, to Abbott to co -author one of the first published
accounts of Parrondo’s discovery.10

Parrondo had called attention to a mathematical fact—a counterintuitive
manifestation of the not-at-all-surprising circumstance that

Composite Markov processes can possess properties that
are not shared by their factors

—that bears no essential relationship to the physical theory of stochastic
ratchets from which historically it sprang, and literature relating to the two
subjects has diverged. The paradox literature—of which the Parrondo’s Paradox

7 Thus did “Smoluchowski’s ratchet” come to be known popularly as
“Feynman’s ratchet.” Such devices are now known most commonly as Brownian
or stochastic ratchets.

8 “Criticism of Feynman’s analysis of the ratchet as an engine,” AJP 64,
1125 -1130 (1996).

9 What Parrondo calls “ seminal document” is a slide entitled “How to cheat
a bad mathematician” that can be found on his website:

http://seneca.fis.ucm.es/parr/

10 G. P. Harmer & D. Abbott, “Parrondo’s paradox,” Statistical Science 14,
206-213 (1999). See also G.P.Harmer,D.Abbott,P.G.Taylor & J.M.R.Parrondo,
“Brownian ratchets and Parrondo’s games,” Chaos 11, 705-714 (2001).
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Group at the University of Adalaide maintains an index11—has by now grown
to be quite extensive. I have found, however, that many of the papers that I
have had an opportunity to examine focus on collateral issues and fail to expose
with sharp clarity the mathematical point that lies at the heart of Parrondo’s
phenomenon, which is my present intent.

Here I look to the Parrondo’s phenomenon as it emerges from the theory of
random walks on finite graphs, and in a companion essay will look to walks on Z
(the simplest graph of infinite order), which is mathematically more demanding.
The present discussion will acquire a ratchet-like flavor, while the discussion of
walks on Z lends itself to the game-theoretic interpretation originally favored
by Parrondo.9

Essentials of the theory of random walks on finite graphs. A walker strides
from vertex to vertex on a finite graph (vertices numbered 1, 2, . . . , n). The
vertices that are single-step-accessible from any given vertex are indicated by
the edges that radiate from that vertex. To each such directed edge is assigned
a probability

mij = probability of stepping i ← j

Let pj(k) denote the probability that after k steps the walker occupies the jth

vertex, and from those assemble the “stochastic vector”12

pppk =





p1(k)
p2(k)

...
pn(k)





Immediately, pi(k + 1) =
∑

j mijpj(k) which can be written

pppk+1 = M pppk with M =





m11 m12 · · · m1n

m21 m22 · · · m2n
...

...
...

mn1 mn2 · · · mnn





Suppose the initial location of the walker is known, given by (say)

11 Go to http://www.eleceng.adalaide.edu.au/groups/parrondo. For recent
work relating specifically to stochastic ratchets, see C. Jarzynski & O. Mazonka,
“Feynman’s ratchet and pawl: An exactly solvable model,” Phys. Rev. E 59,
6448-6459 (1999) and Y. Lee, A. Allison, D. Abbott & H. Eugene Stanley,
“Minimal Brownian ratchet: An exactly solvable model,” PR Letters 91, 220601
(2003)—see the first of the addenda to this essay—and papers cited there.

12 The defining properties of such vectors are (i) that their elements fall
within the unit interval [0, 1] and (ii) sum to unity, and so describe a discrete
distribution.
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ppp0 =





1
0
...
0





We can speak only probabilistically about where the walker’s first step might
take him, but it must take him somewhere. We have

ppp1 = M ppp0 =





m11

m21
...

mn1





and conclude on this basis that all the columns of the transition matrix M must
be stochastic; i.e., that M must be a Markov matrix. The (non-zero) elements
of the jth column of M decorate the edges that radiate from the jth vertex, and
will be considered to be fixed/constant attributes of the graph itself. Individual
walks that proceed from a given intitial vertex are highly diverse, but it is easy
to describe the evolving statistics of large populations of such walks: one has
the Markov process

ppp0 → ppp1 → ppp2 → · · · → pppk = Mkppp0 (1)

To develop the (not necessarily integral) powers of M we in numerical work
might use the Mathematica command MatrixPower[M, k] but for analytical
purposes employ the generalized spectral decomposition

M = λ1P1 + λ2P2 + · · · + λnPn (2.1)

where {λ1, λ2, . . . , λn} is the spectrum of M and where {P1, P2, . . . , Pn} is a
certain complete set of orthogonal projection matrices

n∑

i=1

Pi = I and PiPj = δijPj (2.2)

constructed as follows:13

Let {uuu1, uuu2, . . . , uuun} and {vvv1, vvv2, . . . , vvvn} be right eigenvectors of M and
M T, respectively:14

M uuui = λiuuui and M Tvvvi = λivvvi

The uuu and vvv-vectors are readily seen to be biorthogonal in the sense

13 See “Generalized spectral resolution and some of its applications,” (April,
2009).

14 The row vectors vvvi
T are left eigenvectors of M.
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uuui ⊥ vvvj if λi $= λj

and one can arrange to have biorthogonality in the more general sense uuui ⊥ vvvj !=i

even in cases of spectral degeneracy. From biorthogonality it follows that the
matrices

Pi = uuui · vvvi
T

(uuui, vvvi)
: n = 1, 2, . . . , n (3)

possess the properties that give rise to (2). These results pertain to all real
square matrices, and in symmetric cases give back the standard theory of
spectral decomposition. Our present interest, however, is in their application
to Markov matrices.15

The leading eigenvalue of every Markov matrix is unity, and the other
eigenvalues, whether real or complex (complex eigenvalues occur in conjugate
pairs), fall within or on the boundary of the unit disk . Simple examples of the
latter sort are

(
0 1
1 0

)
: eigenvalues {1,−1}




0 0 1
1 0 0
0 1 0



 : eigenvalues {1, ω, ω2} with ω = ei 2π
3





0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



 : eigenvalues {1, ω, ω2 = −1, ω3 = −ω} with ω = ei 2π
4

but those Markov matrices are permutation matrices: they direct the walker
to visit the vertices in a specific cyclic order devoid of any randomness. More
interesting is the example





0 a 0 1 − a
1 − a 0 a 0

0 1 − a 0 a
a 0 1 − a 0



 : eigenvalues {±1,±λ} (4)

where λ =
√
−1 + 4a − 4a2 is complex except at a = 1

2 (where λ vanishes). Here
the walker executes a nearest-neighbor walk on the perimeter of a square (cyclic
graph of order 4); he advances with probability a, retreats with probability
1−a. Standing-in-place is disallowed by the 0s on the diagonal. The eigenvalue
λ = −1 exerts a profound effect on the asymptotics of the process, as will soon
emerge.

From (2) we obtain

Mk = λk
1 P1 + λk

2 P2 + · · · + λk
n Pn (5)

15 At this point I must be content to make certain assertions without benefit
of explicit proof, all of which could be supported by numerical experimentation
done with randomly constructed populations of Markov matrices.
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For Markov matrices with spectra of the form {1, λ2, λ3, . . . , λn} : |λi| < 1 we
therefore have

lim
k→∞

Mk = P1 (6)

where P1 projects onto the leading “eigenray” of M (by which I mean the real
1-space of vectors eee that satisfy Meee = eee). We take note now of these additional
general properties of Markov matrices:15

• If eee satisfies Meee = eee then the elements of eee are real to within a shared
complex factor and are all of the same sign. Division by their sum produces
a (necessarily real) stochastic vector, which will be denoted ppp∞.

• If eee satisfies Meee = λeee with λ $= 1 then the elements of eee, whether real
or complex, have mixed signs and sum to zero. Such vectors cannot be
rendered stochastic.

For Markov processes of type {1, λ2, λ3, . . . , λn} we therefore have the simple
asymptotic statement

ppp0 −→ P1ppp0 = ppp∞ : all ppp0

Note that all the information that distinguishes one initial state from another is
asymptotically lost: the projection matrix P1 is not invertible. More to the
point, non-singular Markov matrices, though invertible—we by (2) have

M –1 = P1 + λ–1

2 P2 + · · · + λ–1

n Pn

—possess inverses that are non-Markovian, since the numbers λ–1

i fall outside
the unit disk.

Look now again, by way of contrast, to (4), which typifies nearest-neighbor
walks of type {1,−1, λ3, λ4, . . . , λn}. After many steps we have

pppk ∼
{
P1 + (±)k P2

}
ppp0 : k large

By calculation (here I write ± for ±1)

P1 = 1
4





+ + + +
+ + + +
+ + + +
+ + + +



 , P2 = 1
4





+ − + −
− + − +
+ − + −
− + − +





so

P1 + P2 = 1
2





1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1



 , P1 − P2 = 1
2





0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0





We find, therefore, that after many steps the state “blinks”

· · · → pppeven → pppodd → pppeven → pppodd → · · ·
where

ppp0 =





p1

p2

p3

p4



 , pppeven =





α
β
α
β



 , pppodd =





β
α
β
α



 with






α = 1
2 (p1 + p3)

β = 1
2 (p2 + p4)
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The states pppeven and pppodd retain some memory of the initial state, but the
average of those states

1
2

(
pppeven + pppodd

)
= P1ppp0 = 1

4





1
1
1
1



 : all ppp0

retains no such memory. The origin of the blinking phenomenon has to do
with the fact that we can color the vertices of the square graph blue and red
in such a way that the nearest neighboring vertices of every blue vertex are
red and vice versa. A walker who departs from (say) a blue vertex will—with
certainty—after an even number of steps stand on a blue vertex, and after an
odd number of steps stand on a red vertex. Every cyclic graph of even order is
in this sense a blinker. So are the cube and the planar projections of hypercubes
of all orders. And so, as I have had previous occasion to remark,16 are all finite
rectangular and hexagonal tilings. Blinkers are, in short, commonplace. And
it must be borne in mind that the simple asymptotic formula (6) pertains only
to non-blinkers.

Randomwalks on the cyclic graph of order three. The simplest non-blinker graph
is the cyclic graph of order 3, which is “complete” in the standard sense that
every vertex is a nearest neighbor of (i.e., linked by an edge to) every other
vertex. The most general walk on such a graph (stand-in-place forbidden) is
generated by the Markov matrix

M =




0 Y z
x 0 Z
X y 0



 (7)

where X = 1 − x, Y = 1 − y, Z = 1 − z. The spectrum of M reads

{1, λ2, λ3} with






λ2 = − 1
2 (1 + σ)

λ3 = − 1
2 (1 − σ)

where

σ =
√
−3 + 4(x + y + z) − 4(xy + yz + zx)

=
√

(x − X)(Y − y) + (y − Y )(Z − z) + (z − Z)(X − x)

We have M = P1 + λ2P2 + λ3P3, and if we were interested in the details
of the sequence ppp0 → ppp1 → ppp2 → · · · → pppk → · · · would busy ourselves with
construction of the P-matrices that follow from (7). But if—as is the case—we

16 “Some miscellaneous adventures in experimental mathematical physics,”
Notes for a Reed College Physics Seminar (9 November 2011). See the “Blinking
Graphs” notebook that is stored in that file.
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had interest only in the asymptotics of the process we could forego that tedium:
we could (as below) proceed directly to the calculation of the stochastic solution
ppp∞ of Meee = eee. Mathematica supplies

eee = K ·




1 − y + yz
1 − z + zx
1 − x + xy



 : K any constant

whence

ppp∞ = 1
D




1 − y + yz
1 − z + zx
1 − x + xy





D = 3 − (x + y + z) + (xy + yz + zx)
= 2 + λ2λ3 = 2 + det M

which in the special cases x = y = z = a ∈ [0, 1], i.e., when the next-step
probabilities are site-independent, becomes

ppp∞ =





1
3
1
3
1
3





The walker—in such cases, but not more generally—is equally likely, after many
steps, to be found at any of the three vertices of the graph.

Probability current . The stochastic vector pppk that assigns probabilities to the
the possible positions of a walker after he has taken k steps on Z, or possible
winnings after k flips of a loaded coin, are infinite dimensional, and evolve by
action of an infinite dimensional Markov matrix. It is intuitively evident that
such processes do not proceed to a steady asymptotic state; in this fundamental
respect random walks on graphs of infinite order differ profoundly from random
walks on graphs of finite order. We do, however, expect velocity of such a walker
(rate of growth of the expected mean position, or expected winnings) to become
asymptotically steady (on Z, but not on ZD : D > 1). The theory of walks
on finite graphs—even though on such graphs ppp∞ is constant/unchanging—
supports an analog of the latter idea, as I proceed now to explain. For
expository purposes I work within the context provided by (7),17 of which I
adopt temporarily this notational variant:

M =




0 1 − m2 m3

m1 0 1 − m3

1 − m1 m2 0



 =




0 M1←2 M1←3

M2←1 0 M2←3

M3←1 M3←2 0





17 This is a bit like describing Khirchhoff’s Laws as they relate to a specific
simple circuit. It will become obvious that the “probability current” idea—of
which I was made aware by Y. Lee et al11—pertains quite generally to random
walks on finite graphs.
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We show that the M-induced adjustments pppk → pppk+1 of the probabilities
at the respective vertices can be considered to be the result of probability flow
along the edges of the graph. To that end we define probability currents (after
the kth step)

J1→2(k) = M2←1 p1(k) − M1←2 p2(k) = m1 p1(k) − (1 − m2)p2(k)
J2→3(k) = M3←2 p2(k) − M2←3 p3(k) = m2 p2(k) − (1 − m3)p3(k)
J3→1(k) = M1←3 p3(k) − M3←1 p1(k) = m3 p3(k) − (1 − m1)p1(k)

(8)

with Ji←j(k) = −Ji→j(k). We expect now to have (for example)

p1(k + 1) = p1(k)+∆p1(k)
∆p1(k) = J3→1(k) − J1→2(k)

which—as I now demonstrate—checks out: we have

∆p1(k) = J3→1(k) + J2→1(k)
= {M1←3 p3(k) − M3←1 p1(k)}− {M2←1 p1(k) − M1←2 p2(k)}
= m3 p3(k) − (1 − m1)p1(k) − m1 p1(k) + (1 − m2)p2(k)
= −p1(k) + (1 − m2)p2(k) + m3 p3(k)

giving
p1(k + 1) = p1(k) + ∆p1(k)

= (1 − m2)p2(k) + m3 p3(k)

in precise agreement with the result obtained from pppk+1 = Mpppk. When we
assign to the stochastic state its asymptotic value—which in present notation
reads

ppp∞ = 1
D




1 − m2 + m2m3

1 − m3 + m3m1

1 − m1 + m1m2





D = 3 − (m1 + m2 + m3) + (m1m2 + m2m3 + m3m1)

—we find that

J1→2(∞) = J2→3(∞) = J3→1(∞) = m1m2m3 − (1 − m1)(1 − m2)(1 − m3)
D

≡ N(m1, m2, m3)
D(m1, m2, m3)

≡ J∞(m1, m2, m3) (9)

The probability current has become the same on every edge; the steady state is
maintained because inflow balances outflow at every vertex. And the argument
can be reversed: when asked to solve the system

m1q1 − (1 − m2)q2 = m2q2 − (1 − m3)q3 = m3q3 − (1 − m1)q1

q1 + q2 + q3 = 1

Mathematica returns precisely the definition of ppp∞.
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In cases of the type m1 = m2 = m3 = a, where the transition probabilities
are site-independent, we have

J1→2(∞) = J2→3(∞) = J3→1(∞) = a3 − (1 − a)3

D(a, a, a)

D(a, a, a) = 3(1 − a + a2) is positive for all a, so in such cases the probability
current is prograde or retrograde according as a is greater than or less than 1

2 .

More generally, we find18

2 ! D(m1, m2, m3) ! 3 : {m1, m2, m3} ∈ unit cube

(which is to say: D is always positive) so the asymptotic circulation is prograde
or retrograde according as N(m1, m2, m3) is positive or negative. We acquire
interest therefore in—see plate 1—the null surface defined

N(m1, m2, m3) = 0

Edge currents can be associated with random walks on graphs—whether
finite or infinite—of any design. The “probability current” concept provides an
alternative way to think about the “conservation of probability” (persistence
of stochasticity) that is built into the design of Markov matrices, and brings
to mind the random walk approach to the analysis of resistive circuits that is
illustrated in some notes already cited.16 It is, however, only on non-blinker
finite graphs (and particularly on cyclic graphs of odd order) that the vertex
probabilities and edge currents inevitably become steady. The remarkable fact
is that the asymptotic steady currents need not vanish. They endow walks on
such graphs with an analog of “velocity” concept (drifting to the right/left,
winning/losing) that emerges naturally from the theory of random walks on Z.

Composite Markov processes. It is obvious on persistence of stochasticity
grounds that

• Products M1M2 · · ·Mn of Markov matrices are Markovian.

• Stochastically weighted linear combinations q1M1 + q2M2 + · · · + qnMn

are Markovian.

The latter fact is exploited in “Minimal Brownian ratchet: An exactly solvable
model” by Stanley, Abbott and colleagues.11 We look here to a simple instance
of the former fact. From

A =




0 1 − a a
a 0 1 − a

1 − a a 0



 , B =




0 1 − y z
x 0 1 − z

1 − x y 0





18 Most easily by graphic demonstration: plot D(m1, m2, m3) for assorted
values of m3.
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we assemble the composite Markov matrix

C = AB =




(1 − a)x + a(1 − x) ay (1 − a)(1 − z)

(1 − a)(1 − x) (1 − a)y + a(1 − y) az
ax (1 − a)(1 − y) (1 − a)z + a(1 − z)





It is readily verified that (for {a, x, y, z} ∈ [0, 1]) the columns of C are stochastic;
i.e., that C is Markovian. Note the non-zero elements on the diagonal of C.
Those arise from the circumstance that after two steps—each subject to the
“no stand in place” rule—a walker can return to place (in either of two ways).

By “Parrondo ratchet” I refer to the Markov process generated by C.
Already in hand are descriptions of the asymptotic states and currents to which
A and B give rise. We look now (with Mathematica’s assistance) to those that
arise from C. To that end, let C be notated

C =




1 − u − U v W

U 1 − v − V w
u V 1 − w − W



 (10)

We verify that the leading eigenvalue is unity, and—looking to the leading
eigenvector—find that

ppp∞ = 1
D




vw + (v + V )W
wu + (w + W ) U
uv + (u + U ) V



 (11)

D = (uv + vw + wu) + (uV + vW + wU) + (UV + V W + WU)

The diagonal elements of C make no contribution to the edge currents. Working
from (8) by (10) and (11), we obtain

J1→2(∞) = U p1(∞) − vp2(∞)
J2→3(∞) = V p2(∞) − wp3(∞)
J3→1(∞) = W p3(∞) − up1(∞)





= N(u, v, w, U, V, W )

D(u, v, w, U, V, W )

with
N(u, v, w, U, V, W ) = UV W − uvw

This apart from a reversed sign is structurally identical to (9), and when spelled
out in detail becomes

N(a, x, y, z) = (1 − a)3(1 − x)(1 − y)(1 − z) − a3xyz

TheParrondophenomenon.The Markov matrix A generates an a-parameterized
family of random walks on the cyclic graph of order 3, the matrix B generates a
{x, y, z}-parameterized family, and C=AB generatesa{a, x, y, z}-parameterized
family. We are in possession now of descriptions of the probability currents that
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persist in the asymptotic states of those respective walks:

JA(a) = N(a)
D(a)

JB(x, y, z) = N(x, y, z)
D(x, y, z)

JC(a, x, y, z) = N(a, x, y, z)
D(a, x, y, z)

where
N(a) = a3 − (1 − a)3

D(a) = 3(1 − a + a2)

N(x, y, z) = xyz − (1 − x)(1 − y)(1 − z)
D(x, y, z) = 3 − (x + y + z) + (xy + yz + zx)

N(a, x, y, z) = (1 − a)3(1 − x)(1 − y)(1 − z) − a3xyz

D(a, x, y, z) = a2(xy + yz + zx)
+ a(1 − a)

[
x(1 − y) + y(1 − z) + z(1 − x)

]

+ (1 − a)2
[
(1 − x)(1 − y) + (1 − y)(1 − z) + (1 − z)(1 − x)

]

In each instance, the asymptotic circulation is prograde or retrograde according
as N > 0 or N < 0. The boundaries between the two regimes are set by the
null conditions

N(a) = 0 : marks a point (a = 1
2 ) on the unit interval

N(x, y, z) = 0 : inscribes a surface within the unit cube
N(a, x, y, z) = 0 : inscribes a surface within the unit 4-cube

Graphic display of surfaces in 4-space necessarily proceeds section by section.
With Parrondo, we look specifically to the section that arises from setting z = y,
on which

N(x, y, y) = xy2 − (1 − x)(1 − y)2

D(x, y, y) = 3 − (x + 2y) + (2xy + y2)

N(a) = N(a, a, a) = a3 − (1 − a)3

D(a) = D(a, a, a) = 3 − 3a + 3a2

N(a, x, y, y) = (1 − a)3(1 − x)(1 − y)2 − a3xy2

D(a, x, y, y) = a2(2xy + y2)

+ a(1 − a)
[
x + 2y − 2xy − y2

]

+ (1 − a)2
[
3 − 2x − 4y + 2xy + y2

]
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The null surfaces N(a) = N(x, y, y) = N(a, x, y, y) = 0 are seen (plate 2)
to partition the unit cube into six regions. The helicities that arise in those
respective regions are tabulated below:

Region A B C
111 " " #
2 " # #
3 " # "
4 # " #
5 # " "
666 # # "

I give the name “Parrondo’s phenomenon” to the striking fact that in every case
one walk circulates in the sense contrary to that of the other two. Parrondo
himself drew attention to the “paradoxes” that arise when {a, x, y} live in
Region 111 (“A and B lose, but C = AB wins”) else in Region 666 (“A and B
win, but C loses”). The other four cases are quite unparadoxical, since the
observed C -helicity can be attributed to the predominance of one of the others.

To make clear the identity of the respective regions we look to 2-dimensional
a-sections of the surfaces shown in plate 2. To that end, we observe that
according to Mathematica

N(x, y, y) = 0 can be written y = f(x) ≡
x +

√
x(1 − x) − 1
2x − 1

while N(a, x, y, y) = 0 becomes

y = g(x ; a) ≡
u(x ; a) +

√
v(x ; a)

u(x ; a)

with
u(x ; a) = (a − 1)3 + x(1 − 3a + 3a2)

v(x ; a) = a3(a − 1)3x(x − 1)

That information was used to consruct plate 3. Tabulated below are the
currents associated with the parameters identified by intersecting grid lines:

Region a x y JA JB JC

111 0.30 0.15 0.60 −0.1333 −0.0374 +0.0717
2 0.30 0.55 0.60 −0.1333 +0.0555 +0.0387
3 0.30 0.93 0.60 −0.1333 +0.1379 −0.0138
4 0.70 0.15 0.30 +0.1333 −0.1658 +0.0184
5 0.70 0.55 0.30 +0.1333 −0.0753 −0.0240
666 0.70 0.93 0.30 +0.1333 +0.0233 −0.0500

It is seen that the sign pattern conforms to the helicity pattern reported in the
table at the top of the page.
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PLATE 1 (page 13): The null surface N(m1, m2, m3) = 0 that arises from the
Markov matrix

M =




0 1 − m2 m3

m1 0 1 − m3

1 − m1 m2 0





that was introduced on page 11. Unit points on the m1, m2 and m3 axes are
indicated by red/green/blue • • • spheres, respectively. A gray sphere • marks
the origin.

PLATE 2 (page 16): Superimposed null surfaces

N(a) = N(x, y, y) = N(a, x, y, y) = 0

The red/green/blue spheres ••• now refer to unit points on the a, x and y axes.
Current is negative on the origin side of the A and B surfaces, but (recall the
reversed sign noted on page 14) positive on the origin side of the C surface. It
is that sign reversal that in Regions 1 and 6 gives rise to “Parrondo’s Paradox.”

PLATE 3 (page 16): The null surfaces shown in plate 2 are sectioned at a = 0.3
(above) and a = 0.7 (below). The A current is negative at all points shown in
the upper figure, positive at all points shown in the lower figure. Intersecting
grid lines mark the parameter values that were used to constuct the second of
the tables that appear on page 16.
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“Minimal Brownian ratchet”. Reference was made11 to “an exactly solvable
model” devised collaboratively by members of H. Eugene Stanley’s group at
the Center for Polymer Studies & Department of Physics (Boston University)
and Derek Abbott’s group at the Centre for Biomedical Engineering & School
of Electrical and Electronic Engineering (The University of Adelaide) in 2003.
I sketch the essentials of the model because it employs the same material—
Markov matrices A and B that generate random walks on a cyclic graph of
order 3 and the (asymptotic) “probability current” concept—as were central to
the preceding discussion, but makes novel use of that material.

To A and B—defined as they were on page 13

A =




0 A a
a 0 A
A a 0



 , B =




0 Y z
x 0 Z
X y 0





—we bring the requirement that both give rise to asympototic currents that
vanish, which by (9) entails

a3 = A3 =⇒ a = A = 1
2

xyz = (1 − x)Y Z =⇒ x = Y Z
yz + Y Z

, X = yz
yz + Y Z

(12)

The resulting matrices are assembled now not multiplicatively but (see again
page 13) by stochastically weighted linear combination, producing

R = γA + (1 − γ)B : γ ∈ [0, 1]

=





0 γ̄Y + 1
2γ γ̄ z + 1

2γ

γ̄ x + 1
2γ 0 γ̄Z + 1

2γ

γ̄X+ 1
2γ γ̄ y + 1

2γ 0




: γ̄ = 1 − γ

The matrix

A =




0 1

2
1
2

1
2 0 1

2
1
2

1
2 0





is considered to introduce “noise” into the walk generated by B, and γ to control
the “volume” of the noise.

Looking again to (9), we find that the asymptotic R -current is given by

J(y, z; γ) = N(y, z; γ)
D(y, z; γ)
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with
N(y, z; γ) =

(
γ̄x + 1

2γ
)(

γ̄y + 1
2γ

)(
γ̄z + 1

2γ
)

−
(
γ̄X + 1

2γ
)(

γ̄Y + 1
2γ

)(
γ̄Z + 1

2γ
)

D(y, z; γ) = 3 −
(
γ̄x + 1

2γ
)
−

(
γ̄y + 1

2γ
)
−

(
γ̄z + 1

2γ
)

+
(
γ̄x + 1

2γ
)(

γ̄y + 1
2γ

)

+
(
γ̄x + 1

2γ
)(

γ̄z + 1
2γ

)

+
(
γ̄z + 1

2γ
)(

γ̄x + 1
2γ

)

where γ̄ = 1 − γ and where {x, X} are understood to be given by (12).
Entrusting the algebra to Mathematica, we obtain

N(y, z; γ) = 1
4(1−y−z+2yz)

{
γ (−2+6y−4y2+6z−16yz+8y2z−4z2+8yz2)

+ γ2
(3−9y+6y2−9z+24yz−12y2z+6z2−12yz2)

+ γ3
(−1+3y−2y2+3z−8yz+4y2z−2z2+4yz2)

}

D(y, z; γ) = 1
4(1−y−z+2yz)

{
(8−8y−8z+24yz−8y2z−8yz2+8y2z2)

+ (2γ + γ2)(−1+y+z+6yz−8y2z−8yz2+8)
}

The denominators are identical, so make no contribution to J(y, z; γ). Graphic
experimentation19 serves to establish that D(y, z; γ) is positive for all admissible
values of its arguments, so the sign of J(y, z; γ) is fixed by the sign of N(y, z; γ).
It is obvious that N(y, z; 0) = 0 and evident by inspection that N(y, z; 1) = 0;
these are simply the conditions posited at the outset (both A and B generate
walks with zero asymptotic current). Graphs showing the value assumed by
J(y, z; γ) at {x, y} for other specified values of γ can be constructed in the
manner just described,19 and show—this being the point of the model!—that
the asymptotic current (which can have either sign) is typically not zero:

Noise A can stimulate the ratchet B to rotate.

The essence of this striking result—which illustrates in a fresh way the
elementary fact (see again page 5) that

Compound Markov processes can possess properties not shared
by any of the contributory components

—is most easily exposed if (with Parrondo) one sets z = y and looks to graphs
of J(y, y ; γ); i.e., to J vs. y for fixed γ, else J vs. γ for fixed y.

One expects to see a similar phenomenon if B describes a nearest-neighbor
walk on a cyclic graph of higher odd order, but with more parameters the
analysis becomes more complicated (it is in this respect that the ratchet
described above is “minimal”) and graphic display becomes more awkward.
Cyclic graphs of even order are “blinkers” in the sense discussed on pages 9 and
10. The noise-stimulated asymptotic motion of such ratchets is expected to be
jiggly.

19 Use Plot3D[D(y, z; γ)],{y, 0, 1}, {z, 0, 1}] for assorted values of γ.
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Cubic soapfilm and the relativistic velocity addition rule . Use wires of unit length
to connect the six vertices of a unit cube that remain after the vertices (0, 0, 0)
and (1, 1, 1) have been deleted. Dip the resulting framework into soap solution
and produce a film that very closely resembles the null surface shown in plate 1,
which arose from an equation of the form

xyz − (1 − x)(1 − y)(1 − z)
= −1 + (x + y + z) − (xy + yz + zx) + 2xyz = 0 (13)

I am reminded that that same construction came to my attention once in
quite another connection.20 The “relativistic velocity addition formula”—which
refers more properly to the rule for composing colinear Lorentz transformations

L(β2)L(β1) = L(β3) : β3 = β1 + β2

1 + β1β2

—can be written

(β1 + β2 + β) + β1β2β = 0 with β = −β3 (14)

where {β, β1, β2, β3} range on [−1, +1], as would result if we wrote

β1 = 2x − 1
β2 = 2y − 1
β = 2z − 1

and allowed {x, y, z} to range (as above) on [0, 1]. With those substitutions we
find that

LHS of (14)
4

= LHS of (13)

which accounts for the similarity of the figures. Note, however, that (13) entails

z(x, y) = 1 − x − y + xy
1 − x − y + 2xy

= 1 − xy
1 − x − y + 2xy

which does not satisfy Lagrange’s minimal surface equation

(1 + z2
x)zyy − 2zxzyzxy + (1 + z2

y)zxx = 0

It is remarked in Parrondo’s Ratchet II that the null surface is scribed by
straight lines joining midpoints of opposite sides, so resolves into two sets of
three congruent surface segments, bounded by line segments (a “folded kite”) of
lengths 1

2 and 1
2

√
2. Ray Mayer informed me in 1974 that the minimal surface

bounded by such a folded quadrilateral was first described by Riemann.

20 See “How Einstein might have been led to relativity already in 1895”
(August 1999), page 26. This material is based upon a lecture I gave to mark
the centennial of Einstein’s birthday (14 March 1979).


